Primitive Technology: Mud Bricks

author Primitive Technology   1 год. назад

447,902 Like   11,602 Dislike

Primitive technology: searching for groundwater and water filter (water well and tank) full

Hi. This is our aggregate video. In this video we synthesize video searching for groundwater wells and building clean water tanks. We aggregate videos with the same content so people can view them in the simplest way. This video is the process of finding groundwater in the forest to build a clean water filter system in the forest. It's likely that some viewers find it annoying to review these videos. sorry for that inconvenience. Thank you.

Primitive Technology: Tiled Roof Hut

I built this tiled roof hut in the bush using only primitive tools and materials. The tools I used have been made in my previous videos. It should be pointed out that I do not live in the wild and that this is just a hobby. It should be obvious to most that this is not a survival shelter but an experiment in primitive building technology. To cut and carve wood I used the celt stone axe and stone chisel made in this video. To carry water and make fire I used pots and fire sticks made in this video. Finally, to store fire wood and dry, unfired tiles, I used the wood shed built in this video. The wooden frame was built with a 2X2m floor plan and a 2m tall ridge line with 1m tall side walls. 6 posts were put into the ground 0.25 m deep. The 3 horizontal roof beams were attached to these using mortise and tenon joints carved with a stone chisel. The rest of the frame was lashed together with lawyer cane strips. The frame swayed a little when pushed so later triangular bracing was added to stop this. Also when the mud wall was built, it enveloped the posts and stopped them moving altogether. A small kiln was built of mud from the ground and a perforated floor of clay from the creek bank. It was only 25 cm internal diameter and 50 cm tall. Clay was dug, broken tiles (from previous batches) were crushed and added to it as grog and it was mixed thoroughly.This clay was pressed into rectangular moulds made from strips of lawyer cane to form tiles. Wood ash prevented the clay sticking to the stone. 20 tiles were fired at a time. 450 flat tiles and 15 curved ridge tiles were made with only a few breakages. 26 firings were done in all and the average firing took about 4 hours. The fired tiles were then hooked over the horizontal roof battens. An underfloor heating system was built into one side of the hut to act as a sitting/sleeping platform in cold weather. This was inspired by the Korean Ondol or “hot stone”. A trench was dug and covered with flat stones with a firebox at one end and a chimney at the other for draft. The flames travelled beneath the floor heating it. After firing it for a while the stones stay warm all night with heat conducted directly to the sleeping occupant and radiating into the room. The wall was made of clayey mud and stone. A stone footing was laid down and over this a wall of mud was built. To save on mud, stones were included into later wall courses. The mud was dug from a pit in front of the hut and left a large hole with a volume of about 2.5 cubic metres. The finished hut has a swinging door made of sticks. The inside is dark so I made a torch from tree resin. A broken tile with resin on it acts as a small lamp producing a lot of light and little smoke. The end product was a solid little hut, that should be fire and rot resistant. The whole project took 102 days but would have taken 66 days were it not for unseasonal rain. For a more in depth description see my blog ( Wordpress: Patreon page: I have no face book page. Beware of fake pages.

Primitive Technology: Water powered hammer (Monjolo)

I built a water powered hammer called a “Monjolo” (see also karausu (からうす) on google images). I started by making a water spout from half a hollow log to direct water from the creek. This was set up in the creek and water flowed through it. The hammer was made from a fallen tree. I cut it to size by burning it at the points I wanted it cut (to save effort chopping). Next I carved a trough in one end to catch falling water. This was done first with a stone chisel that was then hafted to an L–shaped handle and used as an adze. This adze only took about an hour to make as I already had the chisel head and cordage made of bark fibre to bind it with. To save further effort carving I used hot coals from the fire to char the wood in the trough. I put the coals in using “chopsticks” (unused arrow shafts) to transfer them from the pit. The coals were fanned or blown with a wooden blowpipe till the wood in the trough burned. Then the char was scraped out. The sides of the trough were sealed with clay to make sure the wooden sides did not burn away which would effectively decrease the volume of the trough. This was approximately 8 hours work over two days. With the trough carved I made a hole in the middle of the log as a pivot point. Using the same char and scrape method I burnt a hole right through the log using hot coals and a blow pipe. Again clay was used to prevent wood burning where it was wanted. To burn through the approximately 25 cm diameter log it took about 4 hours and 30 minutes. Another hole was burnt in the end to fit the wooden hammer head and it took a similar amount of time. A tripod lashed with loya cane was set up at the water spout. The axel of the hammer was tied to one leg, the hammer fitted onto the axel and the other end of the axel tied to another leg. The trough was positioned under the waterspout to collect water and the tripod adjusted so that the resting point of the hammer was horizontal (so water wouldn’t prematurely spill out of the trough). The trough filled with water, outweighed the hammer head and tilted the hammer up into the air. The water then emptied out of the trough (now slanting downwards) and the hammer then slammed down onto an anvil stone returning to its original position. The cycle then repeated at the approximate rate of one strike every 10 seconds. The hammer crushes small soft types of stone like sandstone or ochre. I carved a bowl into the anvil stone so that it would collect the powder. I then crushed old pottery (useful as grog for new pots) and charcoal. Practically speaking, this hammer worked ok as a proof of concept but I might adjust it or make a new one with a larger trough and bigger hammer for heavy duty work. This is the first machine I’ve built using primitive technology that produces work without human effort. Falling water replaces human calories to perform a repetitive task. A permanent set up usually has a shed protecting the hammer and materials from the weather while the trough end sits outside under the spout. This type of hammer is used to pulverise grain into flour and I thought I might use one to mill dry cassava chips into flour when the garden matures. This device has also been used to crush clay for porcelain production. A stone head might make it useful as a stamp mill for crushing ores to powder. It might pulp fibres for paper even. Wordpress: Patreon page: I have no face book page, instagram, twitter etc. Beware of fake pages.

Primitive Technology: New area starting from scratch

I bought a new property to shoot primitive technology videos on. The new area is dense tropical rainforest with a permanent creek. Starting completely from scratch, my first project was to build a simple dome hut and make a fire. First, I took some wood, Abroma mollis, for fire sticks. I knapped a small stone blade and used it to strip the fire sicks. Palm fibre was then taken for the tinder. The fire stick kit was then placed under a palm leaf to keep it out of the rain. Next, a stone from the creek was fashioned into a simple hand axe. This was used to cut a staff that was used to clear a path to the hut location. The location for the hut was a clearing densely crowded by native raspberry. This was then cleared using the staff and a small 2.5 m circle was levelled ready for building. Eight 2.75 m long saplings were cut using the hand axe and brought to the site. Eight holes about 25 cm deep were hammered into the ground in a circle 2.5 m in diameter and the saplings were then planted in. The tops were brought together at the top and tied with vine. A door lintel stick was lashed to the front about 75 cm off the ground giving a low door way. A stone flake was used to cut about 600 palm fronds. These were split and lashed horizontally to the frame creating a thatched dome. Mosquitoes are a real problem here so a fire was lit. The fire sticks from before had a hole carved in the base boards and had a notch carved to let the powder pour out. The spindle was twirled in the socket and smoking powder poured out producing a hot coal. This then ignited the palm fibre tinder. The fire was transferred to the hut and a small hearth was made of stones. The fire makes a big difference in the number of mosquitoes which seem unable to tolerate the smoke. The dome was completed up to the top and a small cap was made from lawyer cane and fronds to place on the top to keep rain out. When not in use the cap can be removed to let in more light like a sky light. Finally wood was cut for a bed. This consisted of wooden stakes hammered into the ground at the back of the hut behind the fire pit. Part of the bed frame is attached to the sapling uprights that form the dome. This works ok without the frame shaking too much due to the low attachment point of the bed. Wooden boards were then placed on this and were covered with palm fibre for bedding. Firewood is stored just inside the entrance on the left side of the door looking in. The bed sits behind the fire pit so smoke and flames deter insects or large animals reaching the occupant. Fire sticks and tools are kept just inside the right side of the entrance. The small hut is simple to build and creates a small, dry shelter for camping and storing tools. Though it is dark, the cap can be removed in fine weather to provide a fairly well-lit workspace protected from annoying insects. This new area has good stone, clay and materials lending themselves to elaborate shelters. A permanent creek runs through it. Mosquitoes are abundant here though and will be an issue. The Cassowary, a large, horned, flightless bird lives in this forest. It’s the most dangerous bird in the world, but generally only attacks when threatened. Wordpress: Patreon page: I have no face book page, instagram, twitter etc. Beware of fake pages.

(Turn on captions [CC] in the lower right corner for more information while viewing.)
I made a brick mold that makes bricks 25 x 12.5 x 7.5 cm from wood. A log was split and mortise and tenon joints were carved using a stone chisel and sharp rocks. The mold was lashed together with cane to prevent it from coming apart when used.

Next, I made a mixture of mud and palm fiber to make the bricks. This was then placed into the mold to be shaped and taken to a drying area. 140 bricks were made.
When dry, the bricks were then assembled into a kiln. 32 roof tiles were then made of mud and fired in the kiln. It only took 3 hours to fire the tiles sufficiently. The mud bricks and tiles were a bit weaker than objects made from my regular clay source because of the silt, sand and gravel content of the soil. Because of this, I will look at refining mud into clay in future projects instead of just using mud.

Interestingly, the kiln got hot enough so that iron oxide containing stones began to melt out of the tiles. This is not metallic iron, but only slag (iron oxide and silica) and the temperature was probably not very high, but only enough to slowly melt or soften the stones when heated for 3 hours.

The kiln performed as well as the monolithic ones I've built in the past and has a good volume. It can also be taken down and transported to other areas. But the bricks are very brittle and next time I'd use better clay devoid of sand/silt, and use grog instead of temper made of plant fiber which burns out in firing. The mold works satisfactorily. I aim to make better quality bricks for use in furnaces and buildings in future.
Patreon page:
I have no face book page, instagram, twitter etc. Beware of fake pages.

Comments for video: